skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viel, Matteo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study introduces novel constraints on the free streaming of thermal relic warm dark matter (WDM) from Lyman- α forest flux power spectra. Our analysis utilizes a high resolution, high redshift sample of quasar spectra observed using the HIRES and UVES spectrographs ( z = 4.2 5.0 ). We employ a Bayesian inference framework and a simulation-based likelihood that encompasses various parameters including the free streaming of dark matter, cosmological parameters, the thermal history of the intergalactic medium, and inhomogeneous reionization to establish lower limits on the mass of a thermal relic WDM particle of 5.7 keV (at 95% CL). This result surpasses previous limits from the Lyman- α forest through reduction of the measured uncertainties due to a larger statistical sample and by measuring clustering to smaller scales ( k max = 0.2 km 1 s ). The approximately two-fold improvement due to the expanded statistical sample suggests that the effectiveness of Lyman- α forest constraints on WDM models at high redshifts are limited by the availability of high quality quasar spectra. Restricting the analysis to comparable scales and thermal history priors as in prior studies ( k max < 0.1 km 1 s ) lowers the bound on the WDM mass to 4.1 keV. As the precision of the measurements increases, it becomes crucial to examine the instrumental and modeling systematics. On the modeling front, we argue that the impact of the thermal history uncertainty on the WDM particle mass constraint has diminished due to improved independent observations. At the smallest scales, the primary source of modeling systematic arises from the structure in the peculiar velocity of the intergalactic medium and inhomogeneous reionization. Published by the American Physical Society2024 
    more » « less
  2. ABSTRACT We present the Sherwood–Relics simulations, a new suite of large cosmological hydrodynamical simulations aimed at modelling the intergalactic medium (IGM) during and after the cosmic reionization of hydrogen. The suite consists of over 200 simulations that cover a wide range of astrophysical and cosmological parameters. It also includes simulations that use a new lightweight hybrid scheme for treating radiative transfer effects. This scheme follows the spatial variations in the ionizing radiation field, as well as the associated fluctuations in IGM temperature and pressure smoothing. It is computationally much cheaper than full radiation hydrodynamics simulations, and circumvents the difficult task of calibrating a galaxy formation model to observational constraints on cosmic reionization. Using this hybrid technique, we study the spatial fluctuations in IGM properties that are seeded by patchy cosmic reionization. We investigate the relevant physical processes and assess their impact on the z > 4 Lyman-α forest. Our main findings are: (i) consistent with previous studies patchy reionization causes large-scale temperature fluctuations that persist well after the end of reionization, (ii) these increase the Lyman-α forest flux power spectrum on large scales, and (iii) result in a spatially varying pressure smoothing that correlates well with the local reionization redshift. (iv) Structures evaporated or puffed up by photoheating cause notable features in the Lyman-α forest, such as flat-bottom or double-dip absorption profiles. 
    more » « less
  3. null (Ed.)
    ABSTRACT We derive joint constraints on the warm dark matter (WDM) half-mode scale by combining the analyses of a selection of astrophysical probes: strong gravitational lensing with extended sources, the Ly α forest, and the number of luminous satellites in the Milky Way. We derive an upper limit of λhm = 0.089 Mpc h−1 at the 95 per cent confidence level, which we show to be stable for a broad range of prior choices. Assuming a Planck cosmology and that WDM particles are thermal relics, this corresponds to an upper limit on the half-mode mass of Mhm < 3 × 107 M⊙ h−1, and a lower limit on the particle mass of mth > 6.048 keV, both at the 95 per cent confidence level. We find that models with λhm > 0.223 Mpc h−1 (corresponding to mth > 2.552 keV and Mhm < 4.8 × 108 M⊙ h−1) are ruled out with respect to the maximum likelihood model by a factor ≤1/20. For lepton asymmetries L6 > 10, we rule out the 7.1 keV sterile neutrino dark matter model, which presents a possible explanation to the unidentified 3.55 keV line in the Milky Way and clusters of galaxies. The inferred 95 percentiles suggest that we further rule out the ETHOS-4 model of self-interacting DM. Our results highlight the importance of extending the current constraints to lower half-mode scales. We address important sources of systematic errors and provide prospects for how the constraints of these probes can be improved upon in the future. 
    more » « less
  4. Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N -body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Ly α spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N -body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at https://camels.readthedocs.io . 
    more » « less